IMPORTANCE OF CFD IN THE DESIGN OF EFFICIENT AND SUSTAINABLE SOLAR DEHYDRATORS FOR FRUITS: A SYSTEMATIC REVIEW
Main Article Content
Abstract
Among the postharvest conservation mechanisms, solar dryers are reported as sustainable and appropriate conservation systems for fruits. This article summarizes recent advances, opportunities and challenges in solar fruit drying. Furthermore, the review analyzes the mathematical models commonly used for the evaluation, design and optimization of solar dryers. For the systematic review, databases (Scopus, Scielo and Science Direct) were used, following the PRISMA guideline, which helped carry out the bibliometric analysis and identify the most relevant articles from the last 5 years (25 articles analyzed). Vosviewer software was also used to visualize connections and maps of scientific knowledge.
Highlighting the importance of simulation conditions, characteristics of mathematical modeling and construction materials in the design of more efficient and sustainable solar dehydrators. In addition, some specific results are mentioned, such as the thermal efficiency of an indirect solar dehydrator and optimal values of temperature and humidity in a predictive model. Immense research results have also been produced using CFD based on heat and mass transfer at the micro level. Micro-level CFD modeling indicates that modeling and simulations were performed at the fruit level, without considering the performance of the solar dryer. However, the performance of a solar dryer has a huge effect on the speed and kinetics of drying and consequently determines the quality of the product.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ahmadi, M., Samimi-Akhijahani, H., & Salami, P. (2023). Thermo-economic and drying kinetic analysis of Oleaster using a solar dryer integrated with phase change materials and recirculation system. Journal of Energy Storage, 68, 107351. https://doi.org/10.1016/j.est.2023.107351
Alimohammadi, Z., Samimi Akhijahani, H., & Salami, P. (2020). Thermal analysis of a solar dryer equipped with PTSC and PCM using experimental and numerical methods. Solar Energy, 201, 157-177. https://doi.org/10.1016/j.solener.2020.02.079
Alqadhi, A., Misha, S., Mohd Rosli, M. A., & Akop, M. Z. (2017). Design and simulation of an optimized mixed mode solar dryer integrated with desiccant material. International Journal of Mechanical & Mechatronics Engineering, 17.
Barghi Jahromi, M. S., Kalantar, V., Samimi Akhijahani, H., & Kargarsharifabad, H. (2022). Recent progress on solar cabinet dryers for agricultural products equipped with energy storage using phase change materials. Journal of Energy Storage, 51, 104434. https://doi.org/10.1016/j.est.2022.104434
Bhaskara Rao, T. S. S., & Murugan, S. (2021). Solar drying of medicinal herbs: A review. Solar Energy, 223, 415-436. https://doi.org/10.1016/j.solener.2021.05.065
Getahun, E., Delele, M. A., Gabbiye, N., Fanta, S. W., Demissie, P., & Vanierschot, M. (2021). Importance of integrated CFD and product quality modeling of solar dryers for fruits and vegetables: A review. Solar Energy, 220, 88-110. https://doi.org/10.1016/j.solener.2021.03.049
Ghaffari, A., & Mehdipour, R. (2015). Modeling and Improving the Performance of Cabinet Solar Dryer Using Computational Fluid Dynamics. International Journal of Food Engineering, 11(2), 157-172. https://doi.org/10.1515/ijfe-2014-0266
Iranmanesh, M., Samimi Akhijahani, H., & Barghi Jahromi, M. S. (2020). CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system. Renewable Energy, 145, 1192-1213. https://doi.org/10.1016/j.renene.2019.06.038
Jahromi, M. S. B., Iranmanesh, M., & Akhijahani, H. S. (2022). Thermo-economic analysis of solar drying of Jerusalem artichoke (Helianthus tuberosus L.) integrated with evacuated tube solar collector and phase change material. Journal of Energy Storage, 52, 104688. https://doi.org/10.1016/j.est.2022.104688
Koua, K. B., Fassinou, W. F., Gbaha, P., & Toure, S. (2009). Mathematical modelling of the thin layer solar drying of banana, mango and cassava. Energy, 34(10), 1594-1602. Scopus. https://doi.org/10.1016/j.energy.2009.07.005
Lad, P., Kumar, R., Saxena, R., & Patel, J. (2023). Numerical investigation of phase change material assisted indirect solar dryer for food quality preservation. International Journal of Thermofluids, 18, 100305. https://doi.org/10.1016/j.ijft.2023.100305
Liu, Q., & Bakker-Arkema, F. W. (1997). Stochastic modelling of grain drying: Part 2. Model development. Journal of Agricultural and Engineering Research, 66(4), 275-280. Scopus. https://doi.org/10.1006/jaer.1996.0145
Mirzaee, P., Salami, P., Samimi Akhijahani, H., & Zareei, S. (2023). Life cycle assessment, energy and exergy analysis in an indirect cabinet solar dryer equipped with phase change materials. Journal of Energy Storage, 61, 106760. https://doi.org/10.1016/j.est.2023.106760
Omolola, A. O., Jideani, A. I. O., & Kapila, P. F. (2014). Modeling microwave drying kinetics and moisture diffusivity of mabonde banana variety. International Journal of Agricultural and Biological Engineering, 7(6), 107-113. Scopus. https://doi.org/10.3965/j.ijabe.20140706.013
Purusothaman, M., & Valarmathi, T. N. (2019). Computational fluid dynamics analysis of greenhouse solar dryer. International Journal of Ambient Energy, 40(8), 894-900. https://doi.org/10.1080/01430750.2018.1437567
Rayaguru, K., & Routray, W. (2012). Mathematical modeling of thin layer drying kinetics of stone apple slices. International Food Research Journal, 19(4), 1503-1510. Scopus.
Romero, V. M., Cerezo, E., Garcia, M. I., & Sanchez, M. H. (2014a). Simulation and validation of vanilla drying process in an indirect solar dryer prototype using CFD Fluent program. 57, 1651-1658. Scopus. https://doi.org/10.1016/j.egypro.2014.10.156
Romero, V. M., Cerezo, E., Garcia, M. I., & Sanchez, M. H. (2014b). Simulation and Validation of Vanilla Drying Process in an Indirect Solar Dryer Prototype Using CFD Fluent Program. Energy Procedia, 57, 1651-1658. https://doi.org/10.1016/j.egypro.2014.10.156
Samimi Akhijahani, H., Salami, P., Iranmanesh, M., & Jahromi, M. S. B. (2023). Experimental study on the solar drying of Rhubarb (Rheum ribes L.) with parabolic trough collector assisted with air recycling system, nanofluid and energy storage system. Journal of Energy Storage, 60, 106451. https://doi.org/10.1016/j.est.2022.106451
Sanghi, A., Ambrose, R. P. K., & Maier, D. (2018). CFD simulation of corn drying in a natural convection solar dryer. Drying Technology, 36(7), 859-870. https://doi.org/10.1080/07373937.2017.1359622
Sharshir, S. W., Joseph, A., Peng, G., Kandeal, A. W., Abdullah, A. S., Abdelaziz, G. B., Edreis, E. M. A., & Yuan, Z. (2023). Recent efforts in developing agricultural product drying processes using solar energy. Solar Energy, 257, 137-154. https://doi.org/10.1016/j.solener.2023.04.022
Srivastava, A., Anand, A., Shukla, A., Kumar, A., Buddhi, D., & Sharma, A. (2021). A comprehensive overview on solar grapes drying: Modeling, energy, environmental and economic analysis. Sustainable Energy Technologies and Assessments, 47, 101513. https://doi.org/10.1016/j.seta.2021.101513
Tunde-Akintunde, T. Y. (2011). Mathematical modeling of sun and solar drying of chilli pepper. Renewable Energy, 36(8), 2139-2145. Scopus. https://doi.org/10.1016/j.renene.2011.01.017
Yunus, Y. M., & Al-Kayiem, H. H. (2013). Simulation of Hybrid Solar Dryer. IOP Conference Series: Earth and Environmental Science, 16(1), 012143. https://doi.org/10.1088/1755-1315/16/1/012143
Zhang, Q., & Litchfield, J. B. (1991). An optimization of intermittent corn drying in a laboratory scale thin layer dryer. Drying Technology, 9(2), 383-395. Scopus. https://doi.org/10.1080/07373939108916672