EVALUATION OF CLINOPTILOLITE ZEOLITES FROM CAMAGÜEY FOR THE REMOVAL OF AMMONIUM IN POLLUTED WATERS

Main Article Content

Héctor Sánchez Vargas
Luis Ramos Sánchez

Abstract

The inadequate management of urban and agro-industrial waste has increased the presence of the ammonium ion in surface and groundwater worldwide, bringing with it the phenomenon of eutrophication and the loss of biological diversity, for which the design of systems is required. of alternative treatments for the elimination of this dangerous ion. The objective of the work was to evaluate the adsorption capacity of dissolved ammonium in contaminated water using the zeolite clinoptilolite from the San José del Chorrillo deposit in the Cuban province of Camagüey. Zeolites in their natural, incinerated and sodium states were evaluated, and thermodynamic and kinetic models were also fitted. Natural sodium zeolite has the highest adsorption capacity, which can reach values ​​close to 14 mg/g. The models that best fit the adsorption process studied are the Laugmuir thermodynamic model, with an R2 close to 0.99, and the pseudo second order kinetic model, with a fit error lower than the first order. It was concluded that this study provides relevant data for the correct design of a treatment system for water contaminated with ammonium.

Article Details

How to Cite
Sánchez Vargas, H., & Ramos Sánchez, L. (2022). EVALUATION OF CLINOPTILOLITE ZEOLITES FROM CAMAGÜEY FOR THE REMOVAL OF AMMONIUM IN POLLUTED WATERS. Advances in Science and Innovation, 1(1), 93–106. https://doi.org/10.61210/asi.v1i1.9
Section
Artículos

References

Carbonel, D. (2018). Adsorción de Cadmio, Cobre y Plomo en Bentonita, Caolín y Zeolita Naturales y Modificadas: Una Revisión de los Parámetros de Operación, Isotermas y Cinética. Ingeniería, 23 (3), 252 - 273. https://doi.org/10.14483/23448393.13418

Chamorro, E. (2020). Evaluación de la eficiencia de la aplicación de un geopolímero en la remoción de amonio presente en el agua. Tesis de Licenciatura. Universidad Pontíficia Bolivariana. https://repository.upb.edu.co/bitstream/handle/20.500.11912/9561/1605_e_4%20%281%29.pdf?sequence=1&isAllowed=y

Chuan-Hsia, L., & Kwang, V. (2001). Ammonia removal from composting leachate using zeolite. I. characterization of the zeolite. Journal of Environmental Science and Health, 36 (9), 1671 - 1688. https://doi.org/10.1081/ESE-100106251

Cortés, R. (2007). Efecto de la modificacion de una zeolita natural mexicana en la sorcion de cadmio y 4-clorofenol. Tesis Doctoral. Universidad Autónoma del Estado de México https://inis.iaea.org/collection/NCLCollectionStore/_Public/39/027/39027968.pdf?r=1

Elma, M., Pratiwi, A., Rahma, A., Rampun, E., Mahmud, M., Abdi, C., Rosadi, R., Yanto, D., & Bilad, M. (2021). Combination of Coagulation, Adsorption, and Ultrafiltration Processes for Organic Matter Removal from Peat Water. Sustainability, 14 (1), 370. https://doi.org/10.3390/su14010370

Figueroa, E. (2013). Evaluación de una planta piloto de remoción de arsénico por adsorción mediante un medio agaroso. Tesis de Licenciatura, Universidad de Chile https://repositorio.uchile.cl/bitstream/handle/2250/113112/cf-figueroa_el.pdf?sequence=1

Flieger, J., & Flieger, M. (2020). Ionic Liquids Toxicity — Benefits and Threats. International Journal of Molecular Sciences, 21 (17), 6267. https://doi.org/10.3390/ijms21176267

Fundación Gómez Pardo. (2018). Las zeolitas naturales de Iberoamérica. 190 - 215. Madrid, España: Universidad Politécnica Madrid. https://oa.upm.es/50784/

García, M. (2002). Regeneración de zeolita clinoptilolita empleada para la remoción de amonio. Tesis de Licenciatura, Universidad Autónoma del Estado de Mexico https://inis.iaea.org/collection/NCLCollectionStore/_Public/33/043/33043333.pdf?r=1

Gupta, V., & Ali, I. (2013). Water Treatment for Organic Pollutants by Adsorption Technology. In Environmental Water, 93 – 116. https://doi.org/10.1016/B978-0-444-59399-3.00003-9

Hamilton, K., Ahmed, W., Rauh, E., Rock, C., McLain, J., & Muenich, R. (2020). Comparing microbial risks from multiple sustainable waste streams applied for agricultural use: Biosolids, manure, and diverted urine. Current Opinion in Environmental Science & Health, 14, 37 – 50. https://doi.org/10.1016/j.coesh.2020.01.003

Ho, Y., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process biochemistry, 34 (5), 451- 465. https://doi.org/10.1016/S0032-9592(98)00112-5

Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens. Handlingar, 24, 1 - 39. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1530542

Li, W., Mu, B., & Yang, Y. (2019). Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresource Technology, 277, 157 – 170. https://doi.org/10.1016/j.biortech.2019.01.002

Montalvo, J., García, I., Almeida, M., Betanzos, A., & García, N. (2014). Modelación de la eutroficación e índice de calidad del agua en algunas bahías del archipiélago Sabana Camagüey. Tecnología Química, 34(3), 184 - 196. https://doi.org/10.1590/2224-6185.2014.3.%25x

Myers, A. (2004).Chemical thermodynamics for industry. 243 - 253. Durban, South Africa: University of Natal. https://www.seas.upenn.edu/~amyers/CHAPTER21.pdf

Ngatia, L., Grace, J., Moriasi, D. & Taylor, R. (2019). Eutrofización por nitrógeno y fósforo en ecosistemas marinos. Vigilancia de la contaminación marina , 1 - 17. https://books.google.es/books?hl=es&lr=&id=mTj8DwAAQBAJ&oi=fnd&pg=PA77&dq=nitrogen+eutrophication&ots=Om4LqQA_wY&sig=6xAmR99zYOlH2qMeX2uW8qMMnUQ#v=onepage&q=nitrogen%20eutrophication&f=false

Oficina Nacional de Normalización [ONN] (2008). Zeolitas naturales. Requisitos. (NC 625:2008). In. La Habana, Cuba.

Rodriguez, A. (2010). Diseño tecnológico de una planta para la producción de acetona a partir de materias primas nacionales. Tesis Doctoral, Universidad de Camagüey.

StatPoint Technologies Inc. (2010). Statgraphics Centurion XVI (Version 16.2.04) [Programa de computador]. Warrenton, VA, USA: StatPoint Technologies Inc.

The MathWorks Inc. (2017). Matlab (Version 9.3.0.713579 (R2017b)) [Programa de computador]. Natick, MA, USA: The MathWorks Inc.

Wang, S., & Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156 (1), 11 - 24. |.doi:https://doi.org/10.1016/j.cej.2009.10.029

Wang, Y., Song, X., Xu, Z., Cao, X., Song, J., Huang, W., Ge, X., & Wang, H. (2021). Adsorption of Nitrate and Ammonium from Water Simultaneously Using Composite Adsorbents Constructed with Functionalized Biochar and Modified Zeolite. Water, Air, & Soil Pollution, 232 (5), 198. https://doi.org/10.1007/s11270-021-05145-9

Widiastuti, N., Wu, H., Ang, H., & Zhang, D. (2011). Removal of ammonium from greywater using natural zeolite. Desalination, 277 (1 - 3), 15 - 23 https://doi.org/10.1016/j.desal.2011.03.030

Worch, E. (2021). Adsorption Technology in Water Treatment. De Gruyter. https://doi.org/10.1515/9783110715507

Wu, K., Li, Y., Liu, T., Zhang, N., Wang, M., Yang, S., Wang, W., & Jin, P. (2019). Evaluation of the adsorption of ammonium-nitrogen and phosphate on a granular composite adsorbent derived from zeolite. Environmental Science and Pollution Research, 26 (17), 17632 – 17643. https://doi.org/10.1007/s11356-019-05069-2

Zavareh, S., Farrokhzad, Z., & Darvishi, F. (2018). Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water. Ecotoxicology and Environmental Safety, 155, 1 – 8. https://doi.org/10.1016/j.ecoenv.2018.02.043