RELACIÓN ESTRUCTURA–FUNCIÓN DE LAS PROTEÍNAS. USO DE LA TÉCNICA DE ELECTROFORESIS EN EL ESTUDIO DE SU EXPRESIÓN

Contenido principal del artículo

Morela Fuchs Delgado

Resumen

Las proteínas son componentes del metabolismo celular presentes en todos los organismos vivos, donde realizan importantes funciones que están relacionadas con su estructura.  Estos compuestos han sido estudiados mediante diferentes técnicas y métodos, pero en los últimos años con el uso de nuevas técnicas, se ha ido cambiando el paradigma sobre estructura-función. En este estudio se realizó un análisis de los nuevos conocimientos sobre la estructura de las proteínas: los plegamientos, motivos y dominios que explican parte de la funcionalidad, las proteínas intrínsicamente desordenadas, también llamadas PINEs o PIDs y las proteínas multifuncionales o Moonlighting, un concepto más flexible en el cual la estructura se adapta a las funciones que realiza. Se revisó el aporte de las nuevas técnicas bioinformáticas en el análisis y organización de una gran cantidad de información que se va produciendo con el estudio de la estructura, mediante cristalografía de rayos X y resonancia magnética nuclear (RMN). También, se analizó el estudio de la expresión de las proteínas a través de la técnica de electroforesis, que continúa siendo una herramienta valiosa y complementaria, para comprender el efecto de los factores ambientales sobre el desarrollo de los organismos.

Detalles del artículo

Cómo citar
Fuchs Delgado, M. (2022). RELACIÓN ESTRUCTURA–FUNCIÓN DE LAS PROTEÍNAS. USO DE LA TÉCNICA DE ELECTROFORESIS EN EL ESTUDIO DE SU EXPRESIÓN. Advances in Science and Innovation, 1(1), 77–92. https://doi.org/10.61210/asi.v1i1.8
Sección
Artículos

Citas

Amara, I., Zaidi, I., Masmoudi, K., Ludevid, M., Pagès, M., Goday, A., & Brini, F. (2014) Insights into Late Embryogenesis Abundant (LEA) Proteins in Plants: From Estructura a las Funciones. Revista Americana de Ciencias Vegetales, 5, 3440 - 3455. DOI: 10.4236/ajps.2014.522360.

ATA Scientific (2019). Protein analysis techniques explained. Biomolecular Science guide. https://www.atascientific.com.au/3-protein-analysis-techniques/

Aziz, A., Sabeem, M., Mullath, S., Brini, F., & Masmoudi, K. (2021). Plant Group II LEA Proteins: Intrinsically Disordered Structure for Multiple Functions in Response to Environmental Stresses. Biomolecules, 11 (11), 1662. DOI: 10.3390/biom11111662.

Bonifaz, A., Montelongo-Martínez F., Araiza, J, González, G., Treviño-Rangel R., Flores-Garduño A., Camacho-Cruz, A., & Tirado-Sánchez, A. (2019). Evaluación de MALDI-TOF MS para la identificación de levaduras patógenas oportunistas de muestras clínicas. Revista Chilena de Infectología, 36 (6), 790 - 793. https://dx.doi.org/10.4067/S0716-10182019000600790

Brunelle J., & Green, R. (2014). One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods Enzymol, 541, 151 - 159. DOI: 10.1016/B978-0-12-420119-4.00012-4.

Cardona, F. (2020). Las proteínas. De la estructura primaria a la cuaternaria. Aplicaciones. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural. Universitat Politècnica de València. http://hdl.handle.net/10251/147139

Castilla, Y., González M., & Lara, R. (2014). Determinación de estabilidad genética en vitroplantas de clavel español (Dianthus caryophyllus L.), micropropagadas con Biobras-16. Cultivos Tropicales, 35 (1), 67 - 74. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362014000100010&lng=es&tlng=es.

Castro, J., Maddox, J., Dylan, E., Segundo, L., Rodriguez, H., Casuso, M., Paredes, J., & Cobos, M. (2019). Caracterización in silico y análisis de la expresión de la subunidad alfa de la acetil-coenzima a carboxilasa heteromérica de dos microalgas. Acta Biológica Colombiana, 24 (2), 275 - 290. https://doi.org/10.15446/abc.v24n2.74727

Charlier, D. & Bervoets, I. (2022). Separation and Characterization of Protein–DNA Complexes by EMSA and In-Gel Footprinting. In: Peeters, E., Bervoets, I (eds) Prokaryotic Gene Regulation. Methods in Molecular Biology, 2516. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2413-5_11

Colás A., & Van Der Straeten, D. (2017). Optimization of non-denaturing protein extraction conditions for plant PPR proteins. PLoS One, 12 (11). DOI: 10.1371/journal.pone.0187753.

Corral, R. (2017). Modelo de espacio vectorial para la representación y clasificación de las estructuras de proteínas. Tesis doctoral. Universidad Nacional Autónoma de México. https://www.passeidireto.com/arquivo/111492383/modelo-de-espacio-vectorial-para-la-representacion-y-clasificacion-de-estructura/6

Cuevas, C., & Covarrubias, A. (2011). Las proteínas desordenadas y su función: una nueva forma de ver la estructura de las proteínas y la respuesta de las plantas al estrés. Revista Especializada en Ciencias Químico-Biológicas, 14 (2), 97 - 105. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=36540

Dams, M., Dores-Sousa, J. L., Lamers, R.-J., Treumann, A., & Eeltink, S. (2019). High-Resolution Nano-Liquid Chromatography with Tandem Mass Spectrometric Detection for the Bottom-Up Analysis of Complex Proteomic Samples. Chromatographia, 82 (1), 101 – 110. https://doi.org/10.1007/s10337-018-3647-5

Donnelly, D., Rawlins, C., DeHart, C., Fornelli, L., Schachner, L., Lin, Z., Lippens, J., Aluri, K., Sarin, R., Chen, B., Lantz, C., Jung, W., Johnson, K., Koller, A., Wolff, J., Campuzano, I., Auclair, J., Ivanov, A., Whitelegge, J., Agar, J. (2019). Best practices and benchmarks for intact protein analysis for top-down mass spectrometry. Nature Methods, 16 (7), 587 - 594. https://doi.org/10.1038/s41592-019-0457-0

Ealy, J. (2022). The Artistic and Scientific Nature of Protein Structure: A Historical Overview, 625 – 648. https://doi.org/10.1007/978-3-030-94651-7_28

Espinosa-Cantú, A., Cruz, E., Noda-Garcia, L., & De Luna, A. (2020). Multiple Forms of Multifunctional Proteins in Health and Disease. Front Cell Dev Biol, 10 (8), 451. DOI: 10.3389/fcell.2020.00451.

EL Sharif, H., Giosia, F., & Reddy, S. (2022). Investigation of polyacrylamide hydrogel‐based molecularly imprinted polymers using protein gel electrophoresis. Journal of Molecular Recognition, 35 (1). https://doi.org/10.1002/jmr.2942

Follis A., Llambi, F., Ou, L., Baran, K., Green, D., Kriwacki, R. (2014). The DNA-binding domain mediates both nuclear and cytosolic functions of p53. Nature Structural & Molecular Biology, 21 (6), 535 - 43. DOI: 10.1038/nsmb.2829.

Franco, L., Hernandez, S., Calvo, A., Severi, M., Ferragut, G., Perez, J., Pinol, J., pich, O., Mozo, A., Amela, I., Quero, E., & Cedano, J. (2018). MultitaskProtDB-II: an update of a database of multitasking/moonlighting proteins. Nucleic Acids Research, 46 (D1), D645 - D648. DOI: 10.1093/nar/gkx1066.

Fried, M., & Crothers, D. (1981). Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Research, 9 (23), 6505 - 6525. DOI: 10.1093/nar/9.23.6505.

Fuchs, M., Almeida, I., & Fernández, M. (2021). Screening of rice proteins using 2-d gels after inoculation with Rhizotonia solani, Revista Tayacaja, 4 (1), 100 - 113. https://doi.org/10.46908/tayacaja.v4i1.156

Giraldo, M., Ligarreto, G., Cayón, G., & Melo, C. (2011). Análisis de la carga genética de la colección colombiana de musáceas usando marcadores isoenzimáticos. Acta Agronómica, 60 (2), 108 - 119. https://agris.fao.org/agris-search/search.do?recordID=CO2021A00891

Gomes, S., Miles, A., Janes, R., Wallace, B. (2022). The PCDDB (Protein Circular Dichroism Data Bank): A Bioinformatics Resource for Protein Characterisations and Methods Development, Journal of Molecular Biology, 434 (11). https://doi.org/10.1016/j.jmb.2022.167441.

González, A. (2013). Análisis in silico de los posibles dominios conservados y de regulación de la proteína flavonoidE-3´,5´-hidroxilasa (F3´5´H) en Petunia híbrida. Tesis de Maestría. Centro de Investigación y Asistencia en Tecnología y Diseño del estado de Jalisco. https://ciatej.repositorioinstitucional.mx/jspui/bitstream/1023/488/1/Adriana%20Gonz%C3%A1lez%20Dur%C3%A1n.pdf

González, A., & F. Fillat, (2018). Aspectos metodológicos de la expresión de proteínas recombinantes en Escherichia coli. Revista de Educación Bioquímica (REB), 37 (1), 14 - 2. https://www.medigraphic.com/pdfs/revedubio/reb-2018/reb181c.pdf

Guillén, M. (2017). Estructura y propiedades de las proteínas. https://www.uv.es/tunon/pdf_doc/proteinas_09.pdf

Hernández, S. (2016). Análisis bioinformáticos de las proteínas multifuncionales. Tesis Doctoral. Universitat Autònoma de Barcelona. https://www.tesisenred.net/handle/10803/382811#page=1

Hernández, S., Ferragut, G., Amela, I., Perez-Pons, J., Pinol, J., Mozo-Villarias, A., Cedano, J., & Querol, E. (2014). MultitaskProtDB: a database of Proteínas multitarea. Núcleo Ácidos Res., 42, 517 - 520. DOI: 10.1093/nar/gkt1153.

Islam S., Luo J. & Sternberg M. (1995). Identification and analysis of domains in proteins, Protein Engineering, Design and Selection, 8 (6), 513 – 526. https://doi.org/10.1093/protein/8.6.513

Ayon, N. (2020). Features, roles and chiral analyses of proteinogenic amino acids. AIMS Molecular Science, 7 (3), 229 – 268. https://doi.org/10.3934/molsci.2020011

Jeffery, C. (2018). Protein moonlighting: what is it, and why is it important? Philos Trans R Soc Lond B Biol Sci., 373 (1738), 20160523. DOI: 10.1098/rstb.2016.0523.

Jeffery, C. (1999). Moonlighting Proteins Trends. Biochemical Sciences, 24 (1), 8 - 11. DOI:10.1016/S0968-0004(98)01335-8

Jiménez, J., & Chaparro-Giraldo, A. (2016). Diseño in silico y evaluación funcional de genes semisintéticos que confieran tolerancia a fosfinotricina. Revista Colombiana de Biotecnología, 18 (2), 90 - 96. https://www.redalyc.org/articulo.oa?id=77649147011

Karasawa, M., Vencovsky, R., Silva, C., Cardim, D., Bressan, E., Oliveira, G., & Veasey, E. (2012). Comparison of microsatellites and isozymes in genetic diversity studies of Oryza glumaepatula (Poaceae) populations. Revista de Biología Tropical, 60 (4), 1463 - 78. DOI: 10.15517/rbt. v60i4.2055.

Kelly, R. (2020). Single-cell Proteomics: Progress and Prospects. Molecular & Cellular Proteomics, 19 (11), 1739 – 1748. https://doi.org/10.1074/mcp.R120.002234

Kessel, A., & Ben-Tal, N. (2018). Introduction to Proteins. Chapman and Hall/CRC. https://doi.org/10.1201/9781315113876

Khosla, A., Morffy, N., Li, Q., Faure, L., Chang, S., Yao, J., Zheng, J., Cai, M., Stanga, J., Flematti, G., Waters, M., & Nelson, D. (2020). Structure–Function Analysis of SMAX1 Reveals Domains That Mediate Its Karrikin-Induced Proteolysis and Interaction with the Receptor KAI2. The Plant Cell, 32 (8), 2639 – 2659. https://doi.org/10.1105/tpc.19.00752

Komatsu, S., & Hossain, Z. (2017). Preface—Plant Proteomic Research. International Journal of Molecular Sciences, 18 (1), 88. http://dx.doi.org/10.3390/ijms18010088

Laemmli, U. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680 - 685. https://www.nature.com/articles/227680a0

Levitt, M., & Chothia, C. (1976). Structural patrons in globular protein. Nature. 261 (5561), 552 - 558, DOI: 10.1038 / 261552a0.

Nájar, A. (2019). Análisis de la virulencia de proteínas multifuncionales mediante informática. Tesis de Maestría, Universitat Oberta de Catalunya. http://openaccess.uoc.edu/webapps/o2/bitstream/10609/98607/7/anajarTFM0619memoria.pdf

National Human Genome Research Institute (2022). Protein. https://www.genome.gov/es/genetics-glossary/Protein

Navarro, S., & Suárez, A. (2019). Evaluación in silico de la estructura y función de la proteína hipotética B7FQK1 de Phaeodactylum tricornutum. Tesis de Maestría. Universidad Libre. https://repository.unilibre.edu.co/handle/10901/17781

Nekrasov, A., Kozmin, Y., Kozyrev, S., Ziganshin, R., Brevern, A., & Anashkina, A. (2021). Hierarchical Structure of Protein Sequence. International Journal of Molecular Science, 22 (15), 8339. https://doi.org/10.3390/ijms22158339

Maldonado, N., Robledo, C. & Robledo, J. (2018). La espectrometría de masas MALDI-TOF en el laboratorio de microbiología clínica. Infectio, 22 (1), 35 - 45. http://www.scielo.org.co/pdf/inf/v22n1/0123-9392-inf-22-01-00035.pdf

Martínez, A., Martínez, S., & Ardila, H. (2017). Condiciones para el análisis electroforético de proteínas apoplásticas de tallos y raíces de clavel (Dianthus caryophyllus L) para estudios proteómicos. Revista Colombiana de Química, 46 (2), 5 - 16 https://pesquisa.bvsalud.org/portal/resource/pt/biblio-900819

Matsumoto, H., Haniu, H., & Komori, N. (2019). Determination of Protein Molecular Weights on SDS-PAGE. Methods in Molecular Biology, 1855, 101 - 105. DOI: 10.1007/978-1-4939-8793-1_10.

Mertens, J., Aliyu, H., & Cowan, D. (2018). LEA Proteins and the Evolution of the WHy Domain. Applied and Environmental Microbiology, 84 (15), e00539 - 18. DOI: 10.1128/AEM.00539-18.

Montaldo, C., & Lugo, M. (2019). Electroforesis: fundamentos, avances y aplicaciones. Epistemus, 13 (26), 48 – 54. https://doi.org/10.36790/epistemus.v13i26.96

Moreno, C., Fernández, R., & Valbuena, O. (2017). Caracterización electroforética de las proteínas del endospermo de variedades de arroz venezolanas. Bioagro, 29 (1), 37 - 44. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-33612017000100004&lng=es&tlng=es

Olamoyesan, A., Ang, D., & Rodger, A. (2021). Circular dichroism for secondary structure determination of proteins with unfolded domains using a self-organising map algorithm SOMSpec. RSC advances, 11 (39), 23985 – 23991. https://doi.org/10.1039/d1ra02898g.

Olivares-Quiroz, L., & García-Coli, L. (2004). Plegamiento de las proteínas: Un problema interdisciplinario. Revista de la Sociedad Química de México, 48 (1), 95 - 105. https://www.scienceopen.com/document?vid=d35e4a4d-8f1e-4b8c-84ba-2cf81ee4c101

Protein Data Bank (PBD). PDB Data Distribution by Experimental Method and Molecular Type https://www.rcsb.org/stats/summary

Ream J., Lewis, L., & Lewis, K. (2016). Rapid agarose gel electrophoretic mobility shift assay for quantitating protein: RNA interactions. Analytical Biochemistry, 15 (511), 36 - 41. DOI: 10.1016/j.ab.2016.07.027

Relloso, M., Nievas, J., Fares, T., Farquharsona, V., Mujica, M., Romano, V., Zaratea, M., & Smayevsky, J. (2015). Evaluación de la espectrometría de masas: MALDI-TOF MS para la identificación rápida y confiable de levaduras. Revista Argentina de Microbiología, 47 (2), 103 - 107. https://doi.org/10.1016/j.ram.2015.02.004

Roshni, K. (2021). Protein folding, misfolding, and coping mechanism of cells–A short discussion. Open Journal of Cell and Protein Science, 4 (1), 001 - 004. DOI:10.17352/ojcps.000003

Seo, M., Lei, L., & Egli, M. (2019). Label-Free Electrophoretic Mobility Shift Assay (EMSA) for Measuring Dissociation Constants of Protein-RNA Complexes. Current Protocols in Nucleic Acid Chemistry, 76 (1), e70. https://doi.org/10.1002/cpnc.70

Sklepari, M., Rodger, A., Reason A., Jamshidi S., Prokes, I., & Blindauer, C. (2016). Biophysical characterization of a protein for structure comparison: methods for identifying insulin structural changes. Analythical Métodos, 8 (41), 7460 - 7471 DOI:10.1039/C6AY01573E

Stegeman H., Burgermeister, W., Shah A., Franksen, H. & Krogerrecklenfort, E. (1985). Manual. PHOMA-PHOR

Toshchakov, V., & Neuwald, A. (2020). A survey of TIR domain sequence and structure divergence. Immunogenetics. 72, 181 – 203. https://doi.org/10.1007/s00251-020-01157-7

Vega, N., & Reyes, E. (2020). Introducción al análisis estructural de proteínas y glicoproteínas. Universidad Nacional de Colombia. http://ciencias.bogota.unal.edu.co/fileadmin/Facultad_de_Ciencias/Publicaciones/Imagenes/Portadas_Libros/Quimica/Introduccion_al_analisis_estructural_de_proteinas_y_glicoproteinas/Analisis_estructural_proteinas_y_glicopoteinas.pdf

Via, A., & Helmer-Citterich, M. (2004). A structural study for the optimisation of functional motifs encoded in protein sequences. BMC Bioinformatics, (5), 50. DOI: 10.1186/1471-2105-5-50.

Wegener, M., & Dietz, K. (2022). The mutual interaction of glycolytic enzymes and RNA in post-transcriptional regulation. RNA, 28 (11), 1446 - 1468. DOI: 10.1261/rna.079210.122.

Wetlaufer, D. (1973). Nucleation, rapid folding, and globular intrachain regions in proteins. Proceedings of the National Academy of Sciences of the United States of America., 70 (3), 697 - 701. DOI: 10.1073/pnas.70.3.697.

Williams, S., Yin, L., Foley, G., Casey, L., Outram, M., Ericsson, D., Lu, J., Boden, M., & Kobe, B. (2016). Structure and Function of the TIR Domain from the Grape NLR Protein RPV1. Frontiers in Plant Science, 7, 1850. https://doi.org/10.3389/fpls.2016.01850

Yang, K., Fang, X., Xu, Y., & Liu, B. (2019). Protein fold recognition based on multi-view modeling, Bioinformatics, 35 (17), 2982 – 2990, https://doi.org/10.1093/bioinformatics/btz040

Yu, L., Tanwar, D., Penha, E., Wolf, Y., Koonin, E., & Basu, M. (2019). Grammar of protein domain architectures. Proceedings of the National Academy of Sciences, 116 (9), 3636 – 3645. https://doi.org/10.1073/pnas.1814684116