TECNOLOGÍAS EMERGENTES APLICADOS EN LA EXTRACCIÓN DE FIBRA DIETÉTICA A PARTIR DE RESIDUOS AGRÍCOLAS: REVISIÓN SISTEMÁTICA
Contenido principal del artículo
Resumen
En el presente artículo se identifican estudios realizados en la extracción de fibra dietética de los residuos agrícolas. La revisión sistemática fue aplicada en dos bases de datos SCOPUS y Science direct, aplicando palabras clave en inglés. La búsqueda total mostró 308 documentos, de los datos han sido filtrados y excluidos, dando como resultado diez investigaciones fundamentales sobre la extracción a partir de los métodos de extracción ultrasonido y microondas, permitiendo identificar el impacto de los métodos de extracción de fibra dietética enfocándose en la revalorización de los residuos agrícolas para uso alimentario, biotecnológico y farmacéutico.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Citas
Carciochi, R. A., D´Alessandro, L. G., Vauchel, P., Rodriguez, M. M., Nolasco, S. M. y., Dimitrov, K. (2017). Valorization of agrifood by-products by extraction valuable bioactive compounds using green processes. In A. M. Grumezescu & A. M. Holban (Eds.), Ingredients extraction by physicochemical methods in food (pp. 191-228). London, United Kindgdom: Academic Press. https://doi.org/10.1016/B978-0-12-811521-3.00004-1
Chen, H., He, S., Sun, H., Li, Q., Gao, K., Miao, X., Xiang, J., Wu, X., Gao, L., y., Zhang, Y. (2023). A Comparative Study on Extraction and Physicochemical Properties of Soluble Dietary Fiber from Glutinous Rice Bran Using Different Methods. Separations, 10(2). https://doi.org/10.3390/separations10020090
Devi, S. R., Kumari, T., y., Deka, S. C. (2023). Extraction of dietary fiber and phytochemicals from bottle gourd seeds (Lagenaria siceraria), its physicochemical properties and application in food model. Food Chemistry Advances, 2, 100252. https://doi.org/10.1016/J.FOCHA.2023.100252
Dhar, P., y., Deka, S. C. (2022). Effect of ultrasound-assisted extraction of dietary fiber from the sweetest variety Queen pineapple waste of Tripura (India). Journal of Food Process Engineering, e14220. https://doi.org/10.1111/JFPE.14220
Fidriyanto, R., Singh, B. P., Manju, K. M., Widyastuti, Y., y., Goel, G. (2023). Multivariate analysis of structural and functional properties of fibres from apple pomace using different extraction methods. Food Production, Processing and Nutrition, 5(1). https://doi.org/10.1186/s43014-022-00119-8
Fuso, A., Viscusi, P., Larocca, S., Sangari, F. S., Lolli, V., y., Caligiani, A. (2023). Protease-Assisted Mild Extraction of Soluble Fibre and Protein from Fruit By- Products: A Biorefinery Perspective. Foods, 12(1). https://doi.org/10.3390/foods12010148
Grijalva, P. K., Cornejo, Galo E, Gómez, Raquel R, Real, Karina P, y., Fernandez, A. (2019). Herramientas colaborativas para revisiones sistemáticas Collaborative tools for systematic revisions Contenido.
Haddaway, N-, Page, M., Pritchard, C., y McGuinness, L. (2022). PRISMA 2020: un paquete R y una aplicación Shiny para producir diagramas de flujo compatibles con PRISMA 2020, con interactividad para optimizar la transparencia digital y Open Synthesis Campbell Systematic Reviews, 18 (1230). https://doi.org/10.34044/J.ANRES.2023.57.1.13
Hussain, S., Sharma, M., y., Bhat, R. (2021). Valorisation of sea buckthorn pomace by optimization of ultrasonic-assisted extraction of soluble dietary fibre using response surface methodology. Foods, 10(6). https://doi.org/10.3390/foods10061330
Kumari, T., Das, A. B., y., Deka, S. C. (2022). Impact of extraction methods on functional properties and extraction kinetic of insoluble dietary fiber from green pea peels: A comparative analysis. Journal of Food Processing and Preservation, 46(4), e16476. https://doi.org/10.1111/JFPP.16476
Lai, A., Lu, G., y., Wang, Y. (2015). Ultrasonic-assisted enzymatic extraction technology of dietary fiber from sweetpotato residue. Journal of the Chinese Cereals and Oils Association, 30(8), 99-104.
Li, X., He, X., Lv, Y., y., He, Q. (2014). Extraction and Functional Properties of Water- Soluble Dietary Fiber from Apple Pomace. Journal of Food Process Engineering, 37(3), 293–298. https://doi.org/10.1111/JFPE.12085
Li, S., Hu, N., Zhu, J., Zheng, M., Liu, H., y., Liu, J. (2022). Influence of modification methods on physicochemical and structural properties of soluble dietary fiber from corn bran. Food Chemistry: X, 14, 100298. https://doi.org/10.1016/J.FOCHX.2022.100298
Lúcia Silva Oliveira, A., Costantini, L., Razid Sarbini, S., y., Xia, Q. (s. f.). Positive effects of dietary fiber from sweet potato [Ipomoea batatas (L.) Lam.] peels by different extraction methods on human fecal microbiota in vitro fermentation.
Luo, S., Hou, Y., Xie, L., Zhang, H., Liu, C., y., Chen, T. (2023). Effects of microwave on the potential microbiota modulating effects of agro-industrial by-product fibers among different individuals. LWT, 178, 114621. https://doi.org/10.1016/J.LWT.2023.114621
Ma, Q., Yu, Y., Zhou, Z., Wang, L., & Cao, R. (2023). Effects of different treatments on composition, physicochemical and biological properties of soluble dietary fiber in buckwheat bran. Food Bioscience, 53, 102517. https://doi.org/10.1016/j.fbio.2023.102517
Núñez-Gómez, V., González-Barrio, R., Baenas, N., Moreno, D. A., y., Periago, M. J. (2022). Dietary-Fibre-Rich Fractions Isolated from Broccoli Stalks as a Potential Functional Ingredient with Phenolic Compounds and Glucosinolates. International Journal of Molecular Sciences, 23(21). https://doi.org/10.3390/ijms232113309
Pathania, S., & Kaur, N. (2022). Utilization of fruits and vegetable by-products for isolation of dietary fibres and its potential application as functional ingredients. En Bioactive Carbohydrates and Dietary Fibre (Vol. 27). Elsevier Ltd. https://doi.org/10.1016/j.bcdf.2021.100295
Peng, G., Gan, J., Dong, R., Chen, Y., Xie, J., Huang, Z., Gu, Y., Huang, D., y., Yu, Q. (2021). Combined microwave and enzymatic treatment improve the release of insoluble bound phenolic compounds from the grapefruit peel insoluble dietary fiber. LWT, 149, 111905. https://doi.org/10.1016/J.LWT.2021.111905
Shao, Y., Zhang, C., Guo, Y., Xi, P., & Guo, J. (2014). Extraction of soluble dietary fiber and hemicellulose from Cornus officinalis residue and preparation of fiber drinking water. Frontiers of Agriculture in China, 5(3), 375-381. https://doi.org/10.1007/S11703-011-1078-2/METRICS
Silva, J. B. M. D., Paiva, M. T. P., Pavanello, A. C. L., Mantovan, J., y., Mali, S. (2022). Fiber-rich ingredients obtained from agroindustrial residues through combined hydrothermal-chemical processes. Food Chemistry Advances, 1, 100149. https://doi.org/10.1016/J.FOCHA.2022.100149
Silva, J. B. M. D., Paiva, M. T. P., Pavanello, A. C. L., Mantovan, J., y., Mali, S. (2022). Fiber-rich ingredients obtained from agroindustrial residues through combined hydrothermal-chemical processes. Food Chemistry Advances, 1(November), 100149. https://doi.org/10.1016/j.focha.2022.100149
Singh, P. M. K., Dhar, P., Bhagya Raj, G. V. S., y., Deka, S. C. (2022). Effect of ultrasound assisted extraction of dietary fiber from pineapple peel and its application with anthocyanin rich black rice. Journal of Food Processing and Preservation, 46(11), e17111. https://doi.org/10.1111/JFPP.17111
Spadoni Andreani, E., y., Karboune, S. (2020). Comparison of enzymatic and microwave-assisted alkaline extraction approaches for the generation of oligosaccharides from American Cranberry (Vaccinium macrocarpon) Pomace. Journal of Food Science, 85(8), 2443-2451. https://doi.org/10.1111/1750- 3841.15352
Tanganurat, P., Nanthachai, N., y., Lichanporn, I. (2023). Effect of extracted celery dietary fiber on low-calorie salad dressing with probiotics. Agriculture and Natural Resources, 57(1), 125-134.
Wang, J., Sun, B., Liu, Y., y., Zhang, H. (2014). Optimisation of ultrasound-assisted enzymatic extraction of arabinoxylan from wheat bran. Food Chemistry, 150, 482-488. https://doi.org/10.1016/J.FOODCHEM.2013.10.121
Wang, L., Fan, R., Yan, Y., Yang, S., Wang, X., y., Zheng, B. (2023). Characterization of the structural, physicochemical, and functional properties of soluble dietary fibers obtained from the peanut shell using different extraction methods. Frontiers in Nutrition, 9(3269). https://doi.org/10.3389/FNUT.2022.1103673/BIBTEX
Zhang, X., Zeng, Y., Liu, J., Men, Y., y., Sun, Y. (2023). Effects of three extraction methods on the structural and functional properties of insoluble dietary fibers from mycoprotein. Food Chemistry Advances, 2, 100299. https://doi.org/10.1016/J.FOCHA.2023.100299