Chuño de papas nativas: Beneficio para la salud una revisión sistemática Chuño from native potatoes: Health benefits a systematic review
Contenido principal del artículo
Resumen
El chuño es un alimento ancestral andino con alto valor cultural y nutricional, tradicionalmente elaborado a partir de papas amarillas. Sin embargo, en los últimos años ha surgido un renovado interés por producir chuño a base de papas nativas andinas, cuyas propiedades fisicoquímicas y funcionales superan a las variedades comunes. Estas papas, ricas en antocianinas, compuestos fenólicos, minerales y aminoácidos esenciales, ofrecen un perfil nutricional más completo y beneficioso para la salud. Diversos estudios científicos demuestran que su almidón modificado durante el proceso de elaboración del chuño puede mejorar la digestión, regular el índice glucémico, fortalecer el microbiota intestinal y contribuir a la eliminación de metales pesados. Esta revisión sistemática reúne y analiza investigaciones actuales que destacan el potencial del chuño de papas nativas como alimento funcional y sostenible. Al hacerlo, se busca no solo evidenciar sus beneficios para la salud humana, sino también impulsar la valorización y el aprovechamiento de los recursos agroalimentarios del Perú, fomentando su uso responsable y su integración en una dieta moderna, saludable y culturalmente significativa.
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Citas
Altayan, M. M., Al Darouich, T., & Karabet, F. (2017). On the Plasticization Process of Potato Starch: Preparation and Characterization. Food Biophysics, 12(4), 397–403. https://doi.org/10.1007/S11483-017-9495-2/METRICS
Arias, E. L. Z., Ortíz, J. H. I., Gutarra, K. J. M., Rodríguez, F. J. Á., Gilian, R. K. P., Vilca, G. H. R., Pozo, D. A. B., & Valdez, E. L. N. (2023). Diversidad fenotípica y genética de papas nativas (Solanum spp.) de los Andes Centrales de Perú. Acta Agronómica, 72(1), 88–96. https://doi.org/10.15446/ACAG.V72N1.102549
Bajer, D., & Burkowska-But, A. (2022). Innovative and environmentally safe composites based on starch modified with dialdehyde starch, caffeine, or ascorbic acid for applications in the food packaging industry. Food Chemistry, 374, 131639. https://doi.org/10.1016/J.FOODCHEM.2021.131639
Broekman, J. O. P., Piersma, W., Brinksma, J., & Deuss, P. J. (2025). Study on physicochemical properties of catalytically oxidised starches from various botanical sources. Food Hydrocolloids, 159, 110622. https://doi.org/10.1016/J.FOODHYD.2024.110622
Chaves-Morillo, D. M., Diego, ;, Mejía-España, F., Chaves-Morillo, D. M., Mejía-España, ; D F, & Physicochemical, “. (2023). Comparación fisicoquímica y tecnofuncional del almidón de variedades de papa nativa (Solanum phureja) con almidones comerciales. TecnoLógicas, 26(56), e2455. https://doi.org/10.22430/22565337.2455
Choque-Quispe, D., Ramos-Pacheco, B. S., Ligarda-Samanez, C. A., Barboza-Palomino, G. I., Kari-Ferro, A., Taipe-Pardo, F., Choque-Quispe, Y., María, J., Juan, A., Ramos, F., Andahuaylas, P. C. P. 03701, Choque, D., Ramos, B. S., Ligarda, C. A., Barboza, G. I., Kari, A., & Taipe, F. (2022). Remoción de metales pesados por biopolímeros formulados con almidón de papa nativa/mucílago de nopal. Revista Facultad de Ingeniería Universidad de Antioquia, 103, 44–50. https://doi.org/10.17533/UDEA.REDIN.20201112
Choquetico Iquiapaza, I. Y., Medrano, J. P., Aguilar, G. J., & Tapia-Blácido, D. R. (2023). Novel Starchy Materials Isolated from Andean Native Potatoes: Physical–Chemical and Functional Characterization and Application in Edible Film Production. Starch - Stärke, 75(9–10), 2200143. https://doi.org/10.1002/STAR.202200143
Cruz-Tirado, J. P., Vejarano, R., Tapia-Blácido, D. R., Barraza-Jáuregui, G., & Siche, R. (2019). Biodegradable foam tray based on starches isolated from different Peruvian species. International Journal of Biological Macromolecules, 125, 800–807. https://doi.org/10.1016/J.IJBIOMAC.2018.12.111
Diana, M.-A., Tomas, M.-S., Cesar, A.-M., Claudia, G.-V., Gerardo, G.-G., Carlos, N.-C., Rodriguez-Nuñez, J. R., & Rodríguez Núñez, J. R. (2023). Caracterización fisicoquímica de almidón recuperado de papa (Solanum tuberosum) residual de la industria de papas fritas en México. Biotecnia, 25(2), 60–72. https://doi.org/10.18633/BIOTECNIA.V25I2.1880
Drapal, M., De Boeck, B., Kreuze, H. L., Bonierbale, M., & Fraser, P. D. (2023). Identification of metabolites associated with boiled potato sensory attributes in freshly harvested and stored potatoes. Journal of Food Composition and Analysis, 115, 104934. https://doi.org/10.1016/J.JFCA.2022.104934
Fonseca-Santanilla, E. B., & Betancourt-López, L. L. (2022). Physicochemical and structural characterization of starches from Andean roots and tubers grown in Colombia. Food Science and Technology International = Ciencia y Tecnologia de Los Alimentos Internacional, 28(2), 144–156. https://doi.org/10.1177/1082013221997313
Gallón Bedoya, M., Rodríguez, M. C., & Cotes Torres, J. M. (2019). Evaluation and modeling of the properties and antioxidant characteristics of a new potato variety (Primavera) during storage at 4 °C. Revista Facultad Nacional de Agronomía Medellín, 72(2), 8873–8881. https://doi.org/10.15446/rfnam.v72n2.75155
Gao, L., Xia, M., Li, Z., Wang, M., Wang, P., Yang, P., Gao, X., & Gao, J. (2020). Common buckwheat-resistant starch as a suitable raw material for food production: A structural and physicochemical investigation. International Journal of Biological Macromolecules, 145, 145–153. https://doi.org/10.1016/J.IJBIOMAC.2019.12.116
González-Soto, R. A., Núñez-Santiago, M. C., & Bello-Pérez, L. A. (2019). Preparation and partial characterization of films made with dual-modified (acetylation and crosslinking) potato starch. Journal of the Science of Food and Agriculture, 99(6), 3134–3141. https://doi.org/10.1002/JSFA.9528
Gui, Y., Zou, F., Zhu, Y., Li, J., Wang, N., Guo, L., & Cui, B. (2022). The structural, thermal, pasting and gel properties of the mixtures of enzyme-treated potato protein and potato starch. LWT, 154, 112882. https://doi.org/10.1016/J.LWT.2021.112882
Hao, S., Zheng, Y., Li, M., Feng, X., & Yang, X. (2024). Effects of heat-moisture extrusion on the structure and functional properties of protein-fortified whole potato flour. Food Chemistry: X, 24, 102048. https://doi.org/10.1016/J.FOCHX.2024.102048
Harris, H. C., & Warren, F. J. (2024). The impact of Cas9-mediated mutagenesis of genes encoding potato starch-branching enzymes on starch structural properties and in vitro digestibility. Carbohydrate Polymers, 345, 122561. https://doi.org/10.1016/J.CARBPOL.2024.122561
Jayarathna, S., Hofvander, P., Péter-Szabó, Z., Andersson, M., & Andersson, R. (2024). GBSS mutations in an SBE mutated background restore the potato starch granule morphology and produce ordered granules despite differences to native molecular structure. Carbohydrate Polymers, 331. https://doi.org/10.1016/J.CARBPOL.2024.121860
Leonel, M., Del Bem, M. S., dos Santos, T. P. R., & Franco, C. M. L. (2021). Preparation and properties of phosphate starches from tuberous roots. International Journal of Biological Macromolecules, 183, 898–907. https://doi.org/10.1016/J.IJBIOMAC.2021.05.045
Leong, S. Y., Roberts, R., Hu, Z., Bremer, P., Silcock, P., Toepfl, S., & Oey, I. (2022). Texture and in vitro starch digestion kinetics of French fries produced from potatoes (Solanum tuberosum L.) pre-treated with pulsed electric fields. Applied Food Research, 2(2), 100194. https://doi.org/10.1016/J.AFRES.2022.100194
Lewandowicz, J., Le Thanh-Blicharz, J., & Szwengiel, A. (2024). Insight into Rheological Properties and Structure of Native Waxy Starches: Cluster Analysis Grouping. Molecules 2024, Vol. 29, Page 2669, 29(11), 2669. https://doi.org/10.3390/MOLECULES29112669
Li, S., Li, C., Yang, Y., He, X., Zhang, B., Fu, X., Tan, C. P., & Huang, Q. (2019). Starch granules as Pickering emulsifiers: Role of octenylsuccinylation and particle size. Food Chemistry, 283, 437–444. https://doi.org/10.1016/J.FOODCHEM.2019.01.020
Lizarazo H., S. P., Hurtado R., G. G., & Rodríguez C., L. F. (2015). Physicochemical and morphological characterization of potato starch (Solanum tuberosum L.) as raw material for the purpose of obtaining bioethanol. Agronomía Colombiana, 33(2), 244–252. https://doi.org/10.15446/AGRON.COLOMB.V33N2.47239
Lv, Y., Zhang, L., Li, M., He, X., Hao, L., & Dai, Y. (2019). Physicochemical properties and digestibility of potato starch treated by ball milling with tea polyphenols. International Journal of Biological Macromolecules, 129, 207–213. https://doi.org/10.1016/J.IJBIOMAC.2019.02.028
Martínez, P., Málaga, ; A, Betalleluz, ; I, Ibarz, ; A, Velezmoro, ; C, Agropecuaria, S., Nacional De Trujillo _________, U., & Para Correspondencia, A. (2015). Caracterización funcional de almidones nativos obtenidos de papas (Solanum phureja) nativas peruanas. Scientia Agropecuaria, 6(4), 291–301. https://doi.org/10.17268/SCI.AGROPECU.2015.04.06
Martínez, P., Peña, F., Bello-Pérez, L. A., Núñez-Santiago, C., Yee-Madeira, H., & Velezmoro, C. (2019). Physicochemical, functional and morphological characterization of starches isolated from three native potatoes of the Andean region. Food Chemistry: X, 2, 100030. https://doi.org/10.1016/J.FOCHX.2019.100030
Martins, P. C., Latorres, J. M., & Martins, V. G. (2022). Impact of starch nanocrystals on the physicochemical, thermal and structural characteristics of starch-based films. LWT, 156, 113041. https://doi.org/10.1016/J.LWT.2021.113041
Menzel, C., González-Martínez, C., Chiralt, A., & Vilaplana, F. (2019). Antioxidant starch films containing sunflower hull extracts. Carbohydrate Polymers, 214, 142–151. https://doi.org/10.1016/J.CARBPOL.2019.03.022
MURILLO-MARTÍNEZ, , MARÍA, ALVIS-BERMÚDEZ, , ARMANDO, & ARRAZOLA-PATERNINA, , GUILLERMO. (2021). Propiedades fisicoquímicas y funcionales del almidón obtenido de dos variedades de batata (Ipomoea batatas). Biotecnología En El Sector Agropecuario y Agroindustrial, 19(1), 117–127. https://doi.org/10.18684/BSAA(19)117-127
Rashedi, Z., Mawhinney, R., Gao, W., Salaghi, A., & Fatehi, P. (2025). Crosslinked lignin starch copolymer as a sustainable and thermally stable drilling fluid controller. Carbohydrate Polymers, 350, 123044. https://doi.org/10.1016/J.CARBPOL.2024.123044
Reyniers, S., Ooms, N., Gomand, S. V., & Delcour, J. A. (2020). What makes starch from potato (Solanum tuberosum L.) tubers unique: A review. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2588–2612. https://doi.org/10.1111/1541-4337.12596
Salman, D., Elmi, Y. K., Isak, A. M., & Siyad, A. A. (2024). Analyzing the Impact of Environmental Factors on Solar Power Output Using Explainable Deep Learning Techniques. SSRG International Journal of Electronics and Communication Engineering, 11(10), 119–134. https://doi.org/10.14445/23488549/IJECE-V11I10P110
Schmidt, B., Rokicka, J., Janik, J., & Wilpiszewska, K. (2020). Preparation and Characterization of Potato Starch Copolymers with a High Natural Polymer Content for the Removal of Cu(II) and Fe(III) from Solutions. Polymers 2020, Vol. 12, Page 2562, 12(11), 2562. https://doi.org/10.3390/POLYM12112562
Singh, J., & Singh, N. (2003). Studies on the morphological and rheological properties of granular cold water soluble corn and potato starches. Food Hydrocolloids, 17(1), 63–72. https://doi.org/10.1016/S0268-005X(02)00036-X
Slapnig, P., & Krammer, G. (2024). Starch powder in short air contact time: Material moisture change, stickiness and deposition at different air relative humidity and temperature. Journal of Food Engineering, 376, 112078. https://doi.org/10.1016/J.JFOODENG.2024.112078
Solarte-Montúfar, J. G., Díaz-Murangal, A. E., Osorio-Mora, O., & Mejía-España, D. F. (2019). Propiedades Reológicas y Funcionales del Almidón. Procedente de Tres Variedades de Papa Criolla. Información Tecnológica, 30(6), 35–44. https://doi.org/10.4067/S0718-07642019000600035
Torres, F. G., Arroyo, J., Tineo, C., & Troncoso, O. (2019). Tailoring the Properties of Native Andean Potato Starch Nanoparticles Using Acid and Alkaline Treatments. Starch - Stärke, 71(3–4), 1800234. https://doi.org/10.1002/STAR.201800234
Trujillo-Ccanahuire, J., Ordoñez, E. S., Reategui, D., & Iturri, M. S. (2024). Starch from Colocasia esculenta (L.) Schott of purple and white esculenta varieties: Thermal, technological properties, and morphological study. Revista Facultad Nacional de Agronomía Medellín, 77(3), 10887–10897. https://doi.org/10.15446/rfnam.v77n3.111574
Tsatsop, R. K. T., Djiobie, G. E. T., Panyoo, E. A., Chendjou, S. M. S., Oladimeji, A. O., Nguimbou, R. M., & Ngassoum, M. B. (2024). Process optimization in the pyroconversion of native sweet potato starch: structural and functional characterization of pyrodextrin. Discover Food, 4(1), 1–16. https://doi.org/10.1007/S44187-024-00143-2/TABLES/5
Velásquez Herrera, J. D., Lucas Aguirre, J. C., & Quintero Castaño, V. D. (2017). Physical-chemical characteristics determination of potato (Solanum phureja Juz. & Bukasov) starch. Acta Agronómica, 66(3), 323–330. https://doi.org/10.15446/ACAG.V66N3.52419
Wang, S., Hu, X., Wang, Z., Bao, Q., Zhou, B., Li, T., & Li, S. (2020). Preparation and characterization of highly lipophilic modified potato starch by ultrasound and freeze-thaw treatments. Ultrasonics Sonochemistry, 64, 105054. https://doi.org/10.1016/J.ULTSONCH.2020.105054
Wang, S. Y., Zhang, C., Liu, Q. Q., Wang, Z. J., Wan, K. X., Qian, J. Y., Zhang, L., Wu, C., & Li, Q. (2022). Modification of potato starch by critical melting pretreatment combined with freeze-thawing: Preparation, morphology, structure, and functionality. LWT, 158, 113109. https://doi.org/10.1016/J.LWT.2022.113109
Wi, M. ;, Acek, ˛, Toca-Herrera, L., Sujka, M., Ewa, A., & Acek, W. ˛. (2024). Physicochemical Characteristics of Porous Starch Obtained by Combined Physical and Enzymatic Methods, Part 1: Structure, Adsorption, and Functional Properties. International Journal of Molecular Sciences 2024, Vol. 25, Page 1662, 25(3), 1662. https://doi.org/10.3390/IJMS25031662
Zhang, W., Chen, H., Wang, J., Wang, Y., Xing, L., & Zhang, H. (2014). Physicochemical properties of three starches derived from potato, chestnut, and yam as affected by freeze-thaw treatment. Starch - Stärke, 66(3–4), 353–360. https://doi.org/10.1002/STAR.201200270
Zhang, W., Liu, X., Wang, Q., Zhang, H., Li, M., Song, B., & Zhao, Z. (2018). Effects of potassium fertilization on potato starch physicochemical properties. International Journal of Biological Macromolecules, 117, 467–472. https://doi.org/10.1016/J.IJBIOMAC.2018.05.131
Zheng, Y., Wang, Q., Li, B., Lin, L., Tundis, R., Loizzo, M. R., Zheng, B., & Xiao, J. (2016). Characterization and Prebiotic Effect of the Resistant Starch from Purple Sweet Potato. Molecules (Basel, Switzerland), 21(7). https://doi.org/10.3390/MOLECULES21070932
Zhu, F., & Cui, R. (2019). Comparison of molecular structure of oca (Oxalis tuberosa), potato, and maize starches. Food Chemistry, 296, 116–122. https://doi.org/10.1016/J.FOODCHEM.2019.05.192