Harina germinadas de Maíz morado y Quinua andina para la producción de cereales extruidos: propiedades tecnológicas y aceptación sensorial
Sprouted flour of purple corn and Andean quinoa for the production of extruded cereals: technological properties and sensory acceptance
DOI:
https://doi.org/10.61210/kany.v3i1.182Palabras clave:
Extrusión termoplástica, germinación, maíz morado, quinua, alimento funcionalResumen
La presente investigación tuvo como objetivo desarrollar cereales extruidos funcionales a partir de harinas germinadas de maíz morado (Zea mays L.) y quinua andina (Chenopodium quinoa), evaluando su efecto en las propiedades tecnológicas y la aceptación sensorial. Se formularon 17 mezclas con proporciones variables de maíz morado germinado (5–35%) y quinua germinada (65–95%), procesadas por extrusión a temperaturas entre 120 °C y 130 °C. La formulación óptima (35% maíz morado germinado, 65% quinua germinada, 124.71 °C) presentó la mayor capacidad antioxidante (ORAC = 1427.74 µmol TE/mg) y contenido de polifenoles (TPC = 64.95 mg GAE/100 g). Se observó que a mayor contenido de maíz morado y temperaturas elevadas, los snacks presentaron colores más oscuros, mayor crocancia y menor contenido graso, mientras que la quinua germinada contribuyó a una mayor retención de proteínas y mejor textura uniforme. El análisis sensorial indicó que la formulación influye significativamente en la aceptación general (P < 0.05), siendo preferidas aquellas con equilibrio entre ingredientes y temperatura moderada. En conclusión, el uso combinado de harinas germinadas de granos andinos permite obtener productos extruidos con alto valor nutricional, buenas propiedades tecnológicas y elevada aceptabilidad sensorial, destacando su potencial como alternativa saludable e innovadora en la industria alimentaria local.
Citas
Bewley, J.D. & Black, M. 2014. Seeds: physiology of development and germination. Plenum Press, NY. 445 p.
Campos, D., Chirinos, R., Ranilla, L. G., & Pedreschi, R. (2018). Bioactive potential of Andean fruits, seeds, and tubers. In Advances in food and nutrition research (Vol. 84, pp. 287 -343). Academic Press.
Correa, C., Daniela, M. F., & Montoya, J. (2017). Influencia del método de extracción en las propiedades funcionales de almidón de plátano dominico hartón (musa paradisiaca l.).
do Carmo, C. S., Varela, P., Poudroux, C., Dessev, T., Myhrer, K., Rieder, A., ... & Knutsen, S. H. (2019). The impact of extrusion parameters on physicochemical, nutritional and sensorial properties of expanded snacks from pea and oat fractions. Lwt, 112, 108252.
Figueiredo, H. R., & Carvalho, V. R. J. D. (2015). ALIMENTOS FUNCIONAIS: Compostos bioativos e seus efeitos benéficos à saúde. In II Congresso Internacional do Grupo Unis. Fundação de Ensino e Pesquisa do Sul de Minas.
Graziano, S., Agrimonti, C., Marmiroli, N., & Gullì, M. (2022). Utilisation and limitations of pseudocereals (quinoa, amaranth, and buckwheat) in food production: A review. Trends in Food Science & Technology, 125, 154-165.
Gumul, D., Berski, W., & Zięba, T. (2023). The influence of fruit pomaces on nutritional, pro-health value and quality of extruded gluten-free snacks. Applied Sciences, 13(8), 4818.
Hegazy, H. S., El-Bedawey, A. E. A., Rahma, E. H., & Gaafar, A. M. (2017). Effect of extrusion process on nutritional, functional properties and antioxidant activity of germinated chickpea incorporated corn extrudates. Am. J. Food Sci. Nutr. Res, 4(1), 59-66.
Kantrong, H., Klongdee, S., Jantapirak, S., Limsangouan, N., & Pengpinit, W. (2022). Effects of extrusion temperature and puffing technique on physical and functional properties of purpled third-generation snack after heat treatment. Journal of Food Science and Technology, 59(6), 2209-2219.
Kebede Ali, M., Abera, S., & Neme Tolesa, G. (2023). Optimization of extrusion cooking process parameters to develop teff (Eragrostis (Zucc) Trotter)-based products: Physical properties, functional properties, and sensory quality. Cogent Food & Agriculture, 9(2), 2279705.
Lemmens, E., Moroni, A. V., Pagand, J., Heirbaut, P., Ritala, A., Karlen, Y., ... & Delcour, J. A. (2019). Impact of cereal seed sprouting on its nutritional and technological properties: A critical review. Comprehensive reviews in food science and food safety, 18(1), 305-328.
Martínez-Villaluenga, C., Peñas, E., & Hernández-Ledesma, B. (2020). Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chemistry and Toxicology, 137, 111178. https://doi.org/10.1016/j.fct.2020.111178
Menchaca-Armenta, M., Frutos, M. J., Ramírez-Wong, B., Quintero-Ramos, A., Torres-Chávez, P. I., Valero-Cases, E., ... & Campas-Baypoli, O. N. (2021). The Effect of Nixtamalization Extrusion Process and Tortillas Making on the Stability of Anthocyanins from Blue Corn through the Kinetic and Thermodynamic Parameters. Plant Foods for Human Nutrition, 76(3), 334-339.
Menchaca‐Armenta, M., Ramírez‐Wong, B., Torres‐Chávez, P. I., Quintero‐Ramos, A., Ledesma‐Osuna, A. I., Frutos, M. J., ... & Morales‐Rosas, I. (2020). Effect of extrusion conditions on the anthocyanin content, functionality, and pasting properties of obtained nixtamalized blue corn flour (Zea mays L.) and process optimization. Journal of Food Science, 85(7), 2143-2152.
Ministerio de Agricultura y Riego (2014). “MINAGRI: los granos andinos como alimentos del futuro” Lima, 27 de junio del 2014.
Mohamed, I. O. (2023). Interaction of starch with some food macromolecules during the extrusion process and its effect on modulating physicochemical and digestible properties. A review. Carbohydrate Polymer Technologies and Applications, 5, 100294.
Moraru, C. I., & Kokini, J. L. (2003). Nucleation and expansion during extrusion and microwave heating of cereal foods. Comprehensive Reviews in Food Science and Food Safety, 2(4), 147-165. https://doi.org/10.1111/j.1541-4337.2003.tb00020.x
Muñoz-Pabon, K. S., Roa-Acosta, D. F., Hoyos-Concha, J. L., Bravo-Gómez, J. E., & Ortiz-Gómez, V. (2022). Quinoa snack production at an industrial level: effect of extrusion and baking on digestibility, bioactive, rheological, and physical properties. Foods, 11(21), 3383.
Ortiz, J. (2013). Desenvolvimento e caracterização de bioplásticos de amidos por extrusão termoplástica e termoprensagem. 2013. 198f. Tese (Doutorado em Ciência e Tecnologia de Alimentos), Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro. 2013.
Pathania, S., Singh, B., Sharma, S., Sharma, V., & Singla, S. (2013). Optimization of extrusion processing conditions for preparation of an instant grain base for use in weaning foods. International Journal of Engineering Research and Applications, 3(3), 1040-1049.
Paucar-Menacho, L.; Peñas, E.; Dueñas, M.; Frias, J.; Martínez-Villaluenga, C. (2017). Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. LWT-Food Science and Technology 76B: 245242
Paucar-Menacho, L.M., Martínez-Villaluenga, C., Dueñas, M., Frias, J., & Peñas, E. (2018). Response surface optimization of germination conditions to improve the accumulation of bioactive compounds and the antioxidant activity in quinoa. International Journal of Food Science & Technology, 53(2), 516-524. https://doi.org/10.1111/ijfs.13629
Pico, J., Pismag, R. Y., Laudouze, M., & Martinez, M. M. (2020). Systematic evaluation of the Folin–Ciocalteu and Fast Blue BB reactions during the analysis of total phenolics in legumes, nuts and plant seeds. Food & function, 11(11), 9868-9880.
Ragaee, S., Seetharaman, K., & Abdel-Aal, E. S. M. (2014). The impact of milling and thermal processing on phenolic compounds in cereal grains. Critical reviews in food science and nutrition, 54(7), 837-849.
Robin, F., Engmann, J., Pineau, N., Chanvrier, H., Bovet, N., & Della Valle, G. (2010). Extrusion, structure and mechanical properties of complex starchy foams. Journal of food engineering, 98(1), 19-27.
Sampaio, U. M., Salvador‐Reyes, R., Moro, T. D. M. A., Brito, A. D., Behrens, J., Campelo, P. H., & Clerici, M. T. P. S. (2022). Andean Purple maize to produce extruded breakfast cereals: Impact on techno‐functional properties and sensory acceptance. Journal of the Science of Food and Agriculture.
Song, J., & Tang, Y. (2023). Effect of extrusion temperature on characteristic amino acids, fatty acids, organic acids, and phenolics of white quinoa based on metabolomics. Food Research International, 169, 112761.
Torres, O. L., Lema, M., & Galeano, Y. V. (2021). Effect of using quinoa flour (Chenopodium quinoa Willd.) on the physicochemical characteristics of an extruded pasta. International Journal of Food Science, 2021.
Vega-Galvez A., M. Miranda, J. Vergara, E. Uribe, L. Puente and E. A. Martínez (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa Will.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture 90:2541-2547.
Xiao, X., Li, J., Xiong, H., & Zhu, Y. (2021). Effect of extrusion or fermentation on physicochemical and digestive properties of barley powder. Frontiers in Nutrition, 8, 794355. https://doi.org/10.3389/fnut.2021.794355
Yi, C., Qiang, N., Zhu, H., Xiao, Q., & Li, Z. (2022). Extrusion processing: A strategy for improving the functional components, physicochemical properties, and health benefits of whole grains. Food Research International, 160, 111681.
Zhu, F. (2017). Anthocyanins in cereals: Composition and health effects. Food Research International, 100(1), 184-196.
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Derechos de autor 2025 John Kelby Gonzales Capcha, Daniel Ángel Sánchez Vaca, Alicia Lavado Cruz

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Eres libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
-
Reconocimiento : debe otorgar el crédito correspondiente, proporcionar un enlace a la licencia e e indicar si se realizaron cambios.
-
No comercial : no puede utilizar el material con fines comerciales.
-
ShareAlike : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.